Abstract

Heimler syndrome (HS) is a rare autosomal recessive hereditary disease that is caused by biallelic variants in peroxisomal biogenic factor 1 gene (PEX1), peroxisomal biogenic factor 6 gene (PEX6) or peroxisomal biogenic factor 26 gene (PEX26), resulting in intracellular peroxisomal dysfunction (PBDs). We report a patient with HS with a new compound heterozygous PEX1 variant. Exon sequencing was used to screen pathologic variants in the patient. Retinal characteristics and serum metabolome alterations were evaluated. Scanning laser ophthalmoscope showed a large area of retinal choroidal atrophy at the posterior pole of the retina, with scattered patchy subretinal pigmentation. Optical coherence tomography showed fovea atrophy accompanied by retinal retinoschisis in the right eye and macular retinoschisis and edema in the left eye. The electroretinogram showed obviously reduced amplitudes of a-waves and b-waves under photopic and scotopic conditions in both eyes. Visual field tests showed a reduced central visual field in both eyes. Exon sequencing identified the compound heterozygous variant including c.2966T > C and c.1670+1G > T of the PEX1 gene, with the latter being novel. Nontargeted determination of total lipid metabolites and targeted determination of medium- and long-chain fatty acids in the serum of the patient and his healthy sibling were tested. This study identified a new compound heterozygous PEX1 variant, expanding our understanding of phenotypes in HS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.