Abstract

The continuous development of mini-LEDs has led to higher requirements for chip transfer technology, which makes it difficult for the intermittent transfer method with a mechanical ejector pin to meet these requirements. To solve this problem, a novel compliant 2-DOF ejector pin mechanism for the mass transfer of robotic mini-LED chips is proposed in this paper. The compliance matrix method and the Newton method are employed for system kinematic modeling and dynamics modeling, respectively. The static and dynamic analyses of the mechanism are carried out via ANSYS Workbench, and the results of FEA are demonstrated the effectiveness of theoretical calculation. Then, an ILC is utilized to control the device via a parameters regulation approach in the frequency domain. Finally, an open-loop test and a trajectory tracking test for the prototype are carried out verify the effectiveness of proposed device. The test results indicate that the working stroke of the mechanism reaches 120 μm, the natural frequency of the device is 250.85 Hz, the coupling rate is less than ±0.5% and the tracking errors of 10 Hz, 20 Hz and 30 Hz sinusoidal signals are all within ±1.5%. According to the results of theoretical analyses, FEA and test, it has been proved that the designed mechanism for the mass transfer of mini-LED chips is superiority and effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.