Abstract

The cloud computing paradigm provides an ideal platform for supporting large-scale scientific-workflow-based applications over the internet. However, the scheduling and execution of scientific workflows still face various challenges such as cost and response time management, which aim at handling acquisition delays of physical servers and minimizing the overall completion time of workflows. A careful investigation into existing methods shows that most existing approaches consider static performance of physical machines (PMs) and ignore the impact of resource acquisition delays in their scheduling models. In this article, the authors present a meta-heuristic-based method to scheduling scientific workflows aiming at reducing workflow completion time through appropriately managing acquisition and transmission delays required for inter-PM communications. The authors carry out extensive case studies as well based on real-world commercial cloud sand multiple workflow templates. Experimental results clearly show that the proposed method outperforms the state-of-art ones such as ICPCP, CEGA, and JIT-C in terms of workflow completion time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call