Abstract

Prediction of the temperature field generated with Joule heating in multilayer interconnect stacks is of critical importance for the design and reliability of future microelectronics. Interconnect failure due to electromigration is strongly dependent on its temperature. Simple models fail to capture thermal interaction between layers and within the layer. Detailed simulations on the other hand, take tremendous time and require large storage. This paper describes a threedimensional compact thermal modeling methodology that captures thermal interactions at a lower computational cost and storage requirements. The method is applicable for arbitrary geometries of interconnects due to the use of the finite element method. Case studies with three interconnects placed on a single level at a pitch of 1.0 μm generating different heat rates are reported. The compact model predicts a temperature rise of 4.11 °C at a current density of 10 MA/cm2 for 6.0 μm long interconnects of 0.18 μm width and an aspect ratio of 2. The error in maximum temperature is about 5% when compared with detailed simulations. The compact model for the current cases consists of 219 nodes whereas the detailed model has 99,000 nodes where temperature is computed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.