Abstract

A composite groove structure with high specific strength and light weight has great potential in industrial application, but few studies on this have been carried out due to the fact that it is difficult to fabricate by one of the existing methods. The purpose of this work was to propose a novel method combining 3D printing and filament winding to manufacture the groove structure and study the link between its mechanical strength needs and fabrication parameters. Specifically, filament winding and 3D printing were used to fabricate the cylinder part and complex ring slot part of the groove structure, which is difficult to fabricate by winding. The combining method took advantage of the winding’s high efficiency and the printing’s high forming degree of freedom. The specimen was taken from the structure and submitted to a short beam test to determine its interlaminar shear strength, whereas thermal tests were carried out to evaluate its mechanical performance under high temperature. The interlaminar shear strength reached 6.694 MPa at a fiber orientation of 90°, a heating temperature of 245 °C and a thickness of 0.5 mm. The SEM photo showed some voids and gaps and typical failure in the failed specimen. DMA and TGA were carried out to investigate the performance under high temperature, from which the storage modulus lost half to 120 °C. Overall, the proposed combining novel method offers a new direction in the fabrication of continuous fiber-reinforced thermoplastic composites’ groove structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call