Abstract

Hydrogen peroxide (H2O2), an important member of the family of reactive oxygen species (ROS), has a significant impact on cell signal transduction, energy conversion and immune responses of living organisms. Therefore, accurate detection of the content of H2O2 in living cells is of vital importance. In this paper, we report on the synthesis of a novel colorimetric and near-infrared fluorescent probe HAA, a heterocyclic aromatic amine with acetyl group for the specific detection of both exogenous and endogenous H2O2 in living cells. Our results show that the probe not only possesses high specificity and sensitivity, but also has advantages of low cytotoxicity and good biocompatibility. Theoretical computations elucidated the luminescence and quenching mechanism of HAA in the absence and presence of H2O2. In addition, HAA was applied to the determination of H2O2 in human serum and the imaging of endogenous H2O2 in living cells, during which it demonstrated excellent performance and good potential for future bioanalysis applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.