Abstract

Backgroundβ-D-Galactosidases (EC 3.2.1.23) catalyze the hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides. Cold-active β-D-galactosidases have recently become a focus of attention of researchers and dairy product manufactures owing to theirs ability to: (i) eliminate of lactose from refrigerated milk for people afflicted with lactose intolerance, (ii) convert lactose to glucose and galactose which increase the sweetness of milk and decreases its hydroscopicity, and (iii) eliminate lactose from dairy industry pollutants associated with environmental problems. Moreover, in contrast to commercially available mesophilic β-D-galactosidase from Kluyveromyces lactis the cold-active counterparts could make it possible both to reduce the risk of mesophiles contamination and save energy during the industrial process connected with lactose hydrolysis.ResultsA genomic DNA library was constructed from soil bacterium Paracoccus sp. 32d. Through screening of the genomic DNA library on LB agar plates supplemented with X-Gal, a novel gene encoding a cold-active β-D-galactosidase was isolated. The in silico analysis of the enzyme amino acid sequence revealed that the β-D-galactosidase Paracoccus sp. 32d is a novel member of Glycoside Hydrolase Family 2. However, owing to the lack of a BGal_small_N domain, the domain characteristic for the LacZ enzymes of the GH2 family, it was decided to call the enzyme under study 'BgaL'. The bgaL gene was cloned and expressed in Escherichia coli using the pBAD Expression System. The purified recombinant BgaL consists of two identical subunits with a combined molecular weight of about 160 kDa. The BgaL was optimally active at 40°C and pH 7.5. Moreover, BgaL was able to hydrolyze both lactose and o-nitrophenyl-β-D-galactopyranoside at 10°C with Km values of 2.94 and 1.17 mM and kcat values 43.23 and 71.81 s-1, respectively. One U of the recombinant BgaL would thus be capable hydrolyzing about 97% of the lactose in 1 ml of milk in 24 h at 10°C.ConclusionsA novel bgaL gene was isolated from Paracoccus sp. 32d encoded a novel cold-active β-D-galactosidase. An E. coli expression system has enabled efficient production of soluble form of BgaL Paracoccus sp. 32d. The amino acid sequence analysis of the BgaL enzyme revealed notable differences in comparison to the result of the amino acid sequences analysis of well-characterized cold-active β-D-galactosidases belonging to Glycoside Hydrolase Family 2. Finally, the enzymatic properties of Paracoccus sp. 32d β-D-galactosidase shows its potential for being applied to development of a new industrial biocatalyst for efficient lactose hydrolysis in milk.

Highlights

  • Cold-active enzymes found in cold-adapted organisms thriving in Earth’s polar regions and other areas, where the mean annual temperature is below 5°C, offer a potential for the development of new industrial applications

  • A novel bgaL gene was isolated from Paracoccus sp. 32d encoded a novel cold-active b-Dgalactosidase

  • The amino acid sequence analysis of the BgaL enzyme revealed notable differences in comparison to the result of the amino acid sequences analysis of well-characterized cold-active b-D-galactosidases belonging to Glycoside Hydrolase Family 2

Read more

Summary

Introduction

Cold-active enzymes found in cold-adapted organisms thriving in Earth’s polar regions and other areas, where the mean annual temperature is below 5°C, offer a potential for the development of new industrial applications. Employing cold-active enzymes in the food industry reduces the risk of contamination by mesophilic microorganisms, allowing inactivation of them at moderate temperatures and changes in the taste and nutritional values of the foodstuffs being produced to be avoided [1]. The low temperature of lactose hydrolysis in milk with an optimum temperature at approximately 10°C offer some other important advantages: (i) the lactose hydrolysis can run during shipping and storage of milk that shortening the entire production process (save energy), (ii) eliminating any mesophilic microflora contamination, and (iii) allow the formation of nonenzymatic browning products formed at higher temperatures to be avoided. The enzymatic hydrolysis can be used to remove lactose from the whey generated in the cheese production process. The conversion of the lactose in whey to glucose and galactose, which are more fermentable sugars than lactose allow to reduces the water pollution related to the dairy industry [2]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call