Abstract
Due to the increasingly demand of wireless broadband applications in modern society, the device-to-device (D2D) communication technique plays an important role for improving communication spectrum efficiency and quality of service (QoS). This study focuses on the optimal allocation of link resource in D2D communication systems using intelligent approaches, in order to obtain optimal energy efficiency of D2D-pair users (DP) and also ensure communication QoS. To be specific, the optimal resource allocation (ORA) model for ensuring the cooperation between DP and cellular users (CU) is established, and a novel coding strategy of ORA model is also proposed. Then, for efficiently optimizing the ORA model, a novel swarm-intelligence-based algorithm called the dynamic topology coevolving differential evolution (DTC-DE) is developed, and the efficiency of DTC-DE is also tested by a comprehensive set of benchmark functions. Finally, the DTC-DE algorithm is employed for optimizing the proposed ORA model, and some state-of-the-art algorithms are also employed for comparison. Result of case study shows that the DTC-DE outperforms its competitors significantly, and the optimal resource allocation can be obtained by DTC-DE with robust performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.