Abstract

In this study, a co-culturing Enterobacter sp. and Lactococcus lactis strategy was developed to alter bacterial cellulose (BC) properties and increase nisin yields. We generated high nisin yields (6260 IU/mL) by altering inoculum ratios and inoculation times in a novel co-culture system. Critically, these were 85% higher than L. lactis monocultures. By monitoring fermentation broth pH and lactic acid yields, the pH was higher and lactic acid yields lower during co-culture conditions when compared with L. lactis monocultures, suggesting that co-culturing was more suitable for L. lactis nisin production. We also determined BC film yields and properties (BC, BC-N, and BC-N after nisin release). BC yields produced by co-culturing were not very different from Enterobacter sp. monocultures, but crystallinity was significantly altered. Collectively, our co-culture system adequately and economically modified BC fibers by interfering with self-assembly and crystallization processes during BC synthesis, with significantly improved nisin yields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call