Abstract

A novel Li1.05Ni0.5Mn1.40Ce0.10O4 compound has directly developed at 900˚C without requiring low-temperature or lowering gas treatments. TEM images illustrate a transparent increase in the surface area. A typical high-temperature calcination technique has a considerable effect on the crystal structure in terms of cation ordering degree and Mn3+ concentration. Interesting properties are displayed by the obtained Li1.05Ni0.5Mn1.40Ce0.10O4 has the best performance in oxygen vacancy defect-dependent activity. Methanol oxidation reaction using four electrons alkaline solution reaction chains work may open a simple route to designing the spinel Li1.05Ni0.5Mn1.40Ce0.10O4 with the tunable oxygen vacancies defect to speed up different electrochemical reactions in fuel cells and other applications. In a 1 M KOH aqueous electrolyte, Li1.05Ni0.5Mn1.40Ce0.10O4 showed current densities of 320 mAcm−2 at 5 mV overpotentials and a low Tafel slope of 108 mV dec−1. Considering this, the recently constructed Li1.05Ni0.5Mn1.40Ce0.10O4 spinel has unique electrocatalytic properties toward methanol oxidation with a high mass, specific activity, a large electrochemically active surface area, and better long-term stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.