Abstract

The risk assessment of endocrine-disrupting chemicals (EDCs) greatly relies on in vitro screening. A 3-dimensional (3D) in vitro prostate model that can reflect physiologically-relevant prostate epithelial and stromal crosstalk can significantly advance the current androgen assessment. This study built a prostate epithelial and stromal co-culture microtissue model with BHPrE and BHPrS cells in scaffold-free hydrogels. The optimal 3D co-culture condition was defined, and responses of the microtissue to androgen (dihydrotestosterone, DHT) and anti-androgen (flutamide) exposure were characterized using molecular and image profiling techniques. The co-culture prostate microtissue maintained a stable structure for up to seven days and presented molecular and morphological features of the early developmental stage of the human prostate. The cytokeratin 5/6 (CK5/6) and cytokeratin 18 (CK18) immunohistochemical staining indicated epithelial heterogeneity and differentiation in these microtissues. The prostate-related gene expression profiling did not efficiently differentiate androgen and anti-androgen exposure. However, a cluster of distinctive 3D image features was identified and could be applied in the androgenic and anti-androgenic effect prediction. Overall, the current study established a co-culture prostate model that provided an alternative strategy for (anti-)androgenic EDC safety assessment and highlighted the potential and advantage of utilizing image features to predict endpoints in chemical screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.