Abstract
Issues regarding air quality and related health concerns have prompted this study, which develops an accurate and computationally fast, efficient hybrid modeling system that combines numerical modeling and machine learning for forecasting concentrations of surface ozone. Currently available numerical modeling systems for air quality predictions (e.g., CMAQ) can forecast 24 to 48 h in advance. In this study, we develop a modeling system based on a convolutional neural network (CNN) model that is not only fast but covers a temporal period of two weeks with a resolution as small as a single hour for 255 stations. The CNN model uses meteorology from the Weather Research and Forecasting model (processed by the Meteorology-Chemistry Interface Processor), forecasted air quality from the Community Multi-scale Air Quality Model (CMAQ), and previous 24-h concentrations of various measurable air quality parameters as inputs and predicts the following 14-day hourly surface ozone concentrations. The model achieves an average accuracy of 0.91 in terms of the index of agreement for the first day and 0.78 for the fourteenth day, while the average index of agreement for one day ahead prediction from the CMAQ is 0.77. Through this study, we intend to amalgamate the best features of numerical modeling (i.e., fine spatial resolution) and a deep neural network (i.e., computation speed and accuracy) to achieve more accurate spatio-temporal predictions of hourly ozone concentrations. Although the primary purpose of this study is the prediction of hourly ozone concentrations, the system can be extended to various other pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.