Abstract

Issues regarding air quality and related health concerns have prompted this study, which develops an accurate and computationally fast, efficient hybrid modeling system that combines numerical modeling and machine learning for forecasting concentrations of surface ozone. Currently available numerical modeling systems for air quality predictions (e.g., CMAQ) can forecast 24 to 48 h in advance. In this study, we develop a modeling system based on a convolutional neural network (CNN) model that is not only fast but covers a temporal period of two weeks with a resolution as small as a single hour for 255 stations. The CNN model uses meteorology from the Weather Research and Forecasting model (processed by the Meteorology-Chemistry Interface Processor), forecasted air quality from the Community Multi-scale Air Quality Model (CMAQ), and previous 24-h concentrations of various measurable air quality parameters as inputs and predicts the following 14-day hourly surface ozone concentrations. The model achieves an average accuracy of 0.91 in terms of the index of agreement for the first day and 0.78 for the fourteenth day, while the average index of agreement for one day ahead prediction from the CMAQ is 0.77. Through this study, we intend to amalgamate the best features of numerical modeling (i.e., fine spatial resolution) and a deep neural network (i.e., computation speed and accuracy) to achieve more accurate spatio-temporal predictions of hourly ozone concentrations. Although the primary purpose of this study is the prediction of hourly ozone concentrations, the system can be extended to various other pollutants.

Highlights

  • Issues regarding air quality and related health concerns have prompted this study, which develops an accurate and computationally fast, efficient hybrid modeling system that combines numerical modeling and machine learning for forecasting concentrations of surface ozone

  • The index of agreement (IOA) based on hourly values of the year 2017 was calculated for each station and averaged. (The IOA was selected over correlation as the performance metric for reporting the results because (1) a correlation of 1 doesn’t mean that model captures the high and lows; (2) an IOA considers the bias within the performance metric

  • We found that inland cities performed slightly better than the coastal ones, and their performance improved the farther they were from the coast (Figs. 2, 3a and Figure S8 in the supplementary document)

Read more

Summary

Introduction

Issues regarding air quality and related health concerns have prompted this study, which develops an accurate and computationally fast, efficient hybrid modeling system that combines numerical modeling and machine learning for forecasting concentrations of surface ozone. The objective of using this ML technique is to enhance the CMAQ modeling results by taking advantage of (1) the deep neural network (DNN), a computationally efficient, artificially intelligent system that recognizes uncertainties resulting from simplified physics and chemistry (e.g., parameterizations) of the CMAQ model; and (2) CMAQ, which computes unmeasured chemical variables along with fine temporal and spatial resolutions The aim of this approach is to use the best of both numerical modeling and ML to design a robust and stable algorithm that more accurately forecasts hourly ozone concentrations 14 days in advance and covers a larger spatial domain. The ML technique used in this study was based on the convolutional neural network (CNN) model

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call