Abstract
A novel clustering method is proposed to classify genes or genomes. This method uses a natural representation of genomic data by binary indicator sequences of each nucleotide (adenine (A), cytosine (C), guanine (G), and thymine (T)). Afterwards, the discrete Fourier transform is applied to these indicator sequences to calculate spectra of the nucleotides. Mathematical moments are calculated for each of these spectra to create a multidimensional vector in a Euclidean space for each gene or genome sequence. Thus, each gene or genome sequence is realized as a geometric point in the Euclidean space. Finally, pairwise Euclidean distances between these points (i.e. genome sequences) are calculated to cluster the gene or genome sequences. This method is applied to three sets of data. The first is 34 strains of coronavirus genomic data, the second is 118 of the known strains of Human rhinovirus (HRV), and the third is 30 bacteria genomes. The distance matrices are computed based on the three sets, showing the distances from each point to the others. We used the complete linkage clustering algorithm to build phylogenetic trees to indicate how the distances among these sequence correspond to the evolutionary relationship among these sequences. This genome representation provides a powerful and efficient method to classify genomes and is much faster than the widely acknowledged multiple sequence alignment method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.