Abstract

Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death (SCD) in young adults. Current risk algorithms provide only a crude estimate of risk and fail to account for the different effect size of individual risk factors. The aim of this study was to develop and validate a new SCD risk prediction model that provides individualized risk estimates. The prognostic model was derived from a retrospective, multi-centre longitudinal cohort study. The model was developed from the entire data set using the Cox proportional hazards model and internally validated using bootstrapping. The cohort consisted of 3675 consecutive patients from six centres. During a follow-up period of 24 313 patient-years (median 5.7 years), 198 patients (5%) died suddenly or had an appropriate implantable cardioverter defibrillator (ICD) shock. Of eight pre-specified predictors, age, maximal left ventricular wall thickness, left atrial diameter, left ventricular outflow tract gradient, family history of SCD, non-sustained ventricular tachycardia, and unexplained syncope were associated with SCD/appropriate ICD shock at the 15% significance level. These predictors were included in the final model to estimate individual probabilities of SCD at 5 years. The calibration slope was 0.91 (95% CI: 0.74, 1.08), C-index was 0.70 (95% CI: 0.68, 0.72), and D-statistic was 1.07 (95% CI: 0.81, 1.32). For every 16 ICDs implanted in patients with ≥4% 5-year SCD risk, potentially 1 patient will be saved from SCD at 5 years. A second model with the data set split into independent development and validation cohorts had very similar estimates of coefficients and performance when externally validated. This is the first validated SCD risk prediction model for patients with HCM and provides accurate individualized estimates for the probability of SCD using readily collected clinical parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.