Abstract
There are many potential sources of data uncertainty, such as imperfect measurement or sampling, intrusive environmental monitoring, unreliable sensor networks, and inaccurate medical diagnoses. To avoid unintended results, data mining from new applications like sensors and location-based services needs to be done with care. When attempting to classify data with a high degree of uncertainty, many researchers have turned to heuristic approaches and machine learning (ML) methods. We propose an entirely new ML method in this paper by fusing the Radial Basis Function (RBF) network based on ant colony optimization (ACO). After introducing a large amount of uncertainty into a dataset, we normalize the data and finish training on clean data. The ant colony optimization algorithm is then used to train a recurrent neural network. Finally, we evaluate our proposed method against some of the most popular ML methods, including a k-nearest neighbor, support vector machine, random forest, decision tree, logistic regression, and extreme gradient boosting (Xgboost). Error metrics show that our model significantly outperforms the gold standard and other popular ML methods. Using industry-standard performance metrics, the results of our experiments show that our proposed method does a better job of classifying uncertain data than other methods
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.