Abstract

In-situ interventions in complex environments require new concepts of Parallel Kinematic Manipulators (PKMs) that present higher versatility for adapting to unstructured working environments without affecting their advantageous characteristics. To address this opportunity a novel class of adaptive PKMs is proposed, the upper joints are repositionable on the moving platform and the lower joints are free from a base. These characteristics give to the proposed PKMs the capability to modify its workspace and performance (i.e. stiffness and singularity avoidance) to work on non-conventional manufacturing/repair environments. Further, the kinematic and workspace models of the proposed PKMs are introduced. More importantly, a unique method for singularity analysis is introduced, as the versatility to modify the workspace comes with the disadvantage of singularities that are not constant. To address this issue a strategy based on the Fourier transform is introduced, the dominant frequencies are identified and configurations with lower dominant frequencies are weighted to stabilise the Jacobian of the parallel mechanism. Finally, a set of validations are presented for proving the proposed method of singularity analysis by FEA with an error smaller than 1%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.