Abstract

BackgroundChronic obstructive pulmonary disease (COPD) is a significant respiratory disorder in humans characterized by persistent airway constriction or obstruction due to chronic bronchitis and pulmonary emphysema. Various methods of inducing COPD in mouse models are frequently used in COPD research; however, these cannot completely reproduce histopathologic lesions. This study aimed to establish a new COPD mouse model that reproduces histopathological lesions closely resembling clinical COPD within a shorter induction time.MethodsThe new strategy involved the co-administration of porcine pancreatic elastase (PPE) and lipopolysaccharide (LPS), with PPE intended to induce pulmonary emphysema and LPS intended to induce chronic bronchitis. Male C57BL/6J mice were administered PPE (8 U/kg) on days 0 and 3 and LPS (400 µg/kg) on days 6, 9, 12, and 15. Each administration was performed using a noninvasive intubation-mediated intratracheal instillation method with a laryngoscope.ResultsPostmortem examination on day 22 revealed that pulmonary emphysema and chronic bronchitis were simultaneously induced in 90.91% of the lung lobes. Molecular studies revealed higher messenger ribonucleic acid (mRNA) expression levels of interleukin-6(IL-6) and matrix metalloproteinase-12(MMP-12) associated with the pathogenesis of COPD.ConclusionA new method was developed to establish a COPD mouse model that displays a more severe representation of the histopathological findings of clinical COPD than previous COPD models. It also reduces the time required for model induction. This newly developed COPD mouse model is expected to be a valuable tool for the pathogenesis and therapeutic research on human COPD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.