Abstract

A novel eco-friendly material (CS-U@PS) for persulfate slow-release to effectively degrade organic pollutants (methyl orange and pyrene) was synthesized using chitosan and urea as the encapsulated framework materials via an emulsion cross-linking method for the first time. The obtained CS-U@PS exhibits spherical shapes with a uniform size of approximately 2–3 µm according to the particle-size distribution and SEM image results. The slow-release mechanism was proposed through a kinetics model study and the Ritger–Peppas model fit well (r2 = 0.9699) to indicate that the slow-release process is non-Fickian diffusion. The influences of urea and PS dosages and oxidative conditions on methyl orange degradation were studied, and all the results suggested that urea played an important role in PS slow-release and can also catalyze the activation of PS by iron to further produce radicals and improve the removal efficiency of pollutants. A pyrene removal rate of 90.53% was achieved in aqueous solutions and an above 80% removal rate was obtained in weakly acidic or neutral soil environments by CS-U@PS activated by Fe2+ with citric acid as the chelating agent. Therefore, the fabricated slow-release oxidation materials exhibit application potential for the remediation of organic polluted groundwater and soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.