Abstract
Chaotic Neural Network, also denoted by the acronym CNN, has rich dynamical behaviors that can be harnessed in promising engineering applications. However, due to its complex synapse learning rules and network structure, it is difficult to update its synaptic weights quickly and implement its large scale physical circuit. This paper addresses an implementation scheme of a novel CNN with memristive neural synapses that may provide a feasible solution for further development of CNN. Memristor, widely known as the fourth fundamental circuit element, was theoretically predicted by Chua in 1971 and has been developed in 2008 by the researchers in Hewlett‐Packard Laboratory. Memristor based hybrid nanoscale CMOS technology is expected to revolutionize the digital and neuromorphic computation. The proposed memristive CNN has four significant features: (1) nanoscale memristors can simplify the synaptic circuit greatly and enable the synaptic weights update easily; (2) it can separate stored patterns from superimposed input; (3) it can deal with one‐to‐many associative memory; (4) it can deal with many‐to‐many associative memory. Simulation results are provided to illustrate the effectiveness of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.