Abstract

In this paper, a viable global optimizer based on chaotic differential evolution is hybridized with sequential quadratic programming, an efficient local search technique to exploit short-term hydrothermal coordination (STHTC) involved for power generation and its efficient management. A multi-objective optimization framework is established for minimizing the total cost of thermal generators with valve point loading effects satisfying power balance constraint as well as generator operating and hydrodischarge limits, respectively. The proposed model is implemented on various systems comprising hydrogenerating units as well as different thermal units. The results are compared with state-of-the-art heuristic techniques recently employed on STHTC problems, while the reliability, stability and effectiveness of the proposed framework are validated through the comprehensive analysis of Monte Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.