Abstract

The single-phase photovoltaic energy storage inverter represents a pivotal component within photovoltaic energy storage systems. Its operational dynamics are often intricate due to its inherent characteristics and the prevalent usage of nonlinear switching elements, leading to nonlinear characteristic bifurcation such as bifurcation and chaos. In this paper, a deep investigation of a single-phase H-bridge photovoltaic energy storage inverter under proportional–integral (PI) control is made, and a sinusoidal delayed feedback control (SDFC) strategy to mitigate the nonlinear characteristics is proposed. A frequency domain mapping model of the system is established, then, by analyzing the Jacobian matrix and equilibrium points, the bifurcation diagram is formed, and finally, the stable operational domains are determined under double and triple bifurcation parameters. Through simulation experiments, the efficacy of this strategy is validated. The findings show that through the control strategy, the stable operational envelope of the inverter can be greatly expanded and the nonlinear dynamic phenomena can be notably suppressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.