Abstract

Confidentiality is an important issue when digital images are transmitted over public networks, and encryption is the most useful technique employed for this purpose. Image encryption is somehow different from text encryption due to some inherent features of image such as bulk data capacity and high correlation among pixels, which are generally difficult to handle by conventional algorithms. Recently, chaos-based encryption has suggested a new and efficient way to deal with the intractable problems of fast and highly secure image encryption. This paper proposes a novel chaos-based bit-level permutation scheme for secure and efficient image cipher. To overcome the drawbacks of conventional permutation-only type image cipher, the proposed scheme introduced a significant diffusion effect in permutation procedure through a two-stage bit-level shuffling algorithm. The two-stage permutation operations are realized by chaotic sequence sorting algorithm and Arnold Cat map, respectively. Results of various types of analysis are interesting and indicate that the security level of the new scheme is competitive with that of permutation–diffusion type image cipher, while the computational complexity is much lower. Therefore the new scheme is a good candidate for real-time secure image communication applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.