Abstract

This paper introduces a novel computational fluid dynamics-artificial neural network (CFD-ANN) approach that has been devised to enhance the efficiency of plunger valves. The primary emphasis of this research is to achieve an optimal equilibrium between hydraulic flow and geometric configuration. This study is a novel contribution to the field as it explores the flow dynamics of plunger valves using Computational Fluid Dynamics (CFD) and proposes a unique methodology by incorporating Machine Learning (ML) for performance forecasting. An artificial neural network (ANN) architecture was developed using a thorough comprehension of flow physics and the impact of geometric parameters acquired through computational fluid dynamics (CFD). Using optimization, the primary aspects of the Artificial Neural Network (ANN), including the learning algorithm and the number of hidden layers, have been modified. This refinement has resulted in the development of an architecture exhibiting a remarkably high R2 value of 0.987. This architectural design was employed to optimize the plunger valve. By utilizing Artificial Neural Networks (ANN), a comprehensive analysis comprising 1000 distinct configurations was effectively performed, resulting in a significant reduction in time expenditure compared to relying on Computational Fluid Dynamics (CFD). The result was a refined arrangement that achieved maximum head loss, subsequently verified using computational fluid dynamics (CFD) simulations, resulting in a minimal discrepancy of 2.66%. The efficacy of artificial neural networks (ANN) becomes apparent due to their notable cost-efficiency, along with their capacity to produce outcomes that are arduous and expensive to get through conventional optimization research utilizing computational fluid dynamics (CFD).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.