Abstract

Oligodendrocyte-derived neurite-outgrowth inhibitor Nogo-A and its restriction mechanism are well-known. Recently, Nogo-A is reported to be abundantly expressed in neurons, however, the concrete link between neuronal Nogo-A and neuronal development is poorly understood. In the present study, we used Neuro2A and COS7 cell lines to clarify that Nogo-A largely distributed in the centrosome and microtubules-rich regions. When endogenous Nogo-A was down-regulated with RNA interference, the percentage of cell differentiation and the total neurite length of Neuro2A exposed to valproic acid (VPA) decreased sharply. Furthermore, in primary neurons, acetylated α-tubulin decreased at the tips of neurites where endogenous Nogo-A was still highly expressed. In HEK293FT cell lines, Nogo-A overexpression could redistribute acetylated α-tubulin but not change the level of α-tubulin. Together, our data discovered that centrosome- and microtubules-localized Nogo-A positively regulates neuronal differentiation and neurite outgrowth of Neuro2A cell lines, implicating the essential roles of subcellular Nogo-A in neuronal development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.