Abstract
BackgroundRecently a series of algorithms have been developed, providing automatic tools for tracing C. elegans embryonic cell lineage. In these algorithms, 3D images collected from a confocal laser scanning microscope were processed, the output of which is cell lineage with cell division history and cell positions with time. However, current image segmentation algorithms suffer from high error rate especially after 350-cell stage because of low signal-noise ratio as well as low resolution along the Z axis (0.5-1 microns). As a result, correction of the errors becomes a huge burden. These errors are mainly produced in the segmentation of nuclei. Thus development of a more accurate image segmentation algorithm will alleviate the hurdle for automated analysis of cell lineage.ResultsThis paper presents a new type of nuclei segmentation method embracing an bi-directional prediction procedure, which can greatly reduce the number of false negative errors, the most common errors in the previous segmentation. In this method, we first use a 2D region growing technique together with the level-set method to generate accurate 2D slices. Then a modified gradient method instead of the existing 3D local maximum method is adopted to detect all the 2D slices located in the nuclei center, each of which corresponds to one nucleus. Finally, the bi-directional pred- iction method based on the images before and after the current time point is introduced into the system to predict the nuclei in low quality parts of the images. The result of our method shows a notable improvement in the accuracy rate. For each nucleus, its precise location, volume and gene expression value (gray value) is also obtained, all of which will be useful in further downstream analyses.ConclusionsThe result of this research demonstrates the advantages of the bi-directional prediction method in the nuclei segmentation over that of StarryNite/MatLab StarryNite. Several other modifications adopted in our nuclei segmentation system are also discussed.
Highlights
A series of algorithms have been developed, providing automatic tools for tracing C. elegans embryonic cell lineage
One system named StarryNite has been developed for automated cell lineage tracing and gene expression profiling during C.elegans embryogenesis [4,5]
A lineage tree can be generated with StarryNite automatically based on the 3D time-lapse image of a developing C. elegans embryo
Summary
A series of algorithms have been developed, providing automatic tools for tracing C. elegans embryonic cell lineage. Current image segmentation algorithms suffer from high error rate especially after 350-cell stage because of low signal-noise ratio as well as low resolution along the Z axis (0.5-1 microns). To. due to the low resolution in the Z-axis and high noise in the 3D time-lapse image of C. elegans, StarryNite/MatLab StarryNite output suffers from high error rate especially during late embryogenesis. Due to the low resolution in the Z-axis and high noise in the 3D time-lapse image of C. elegans, StarryNite/MatLab StarryNite output suffers from high error rate especially during late embryogenesis It takes around 2–5 human hours for manually annotating StarryNite’s output up to 350 cell stage, but for most cells, at least one division process cannot be correctly traced in this kind of lineage tree [6,7,8]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.