Abstract

Levulinic acid has recently been identified as a potential platform chemical that can be produced from agricultural waste and can lead to specialty chemicals, fuel additives and liquid fuels. Based on this versatile molecule, we have developed a catalytic cascade approach to convert solid cellulose into liquid hydrocarbon fuels for use in the transportation sector. Following a systems approach, a conceptual process synthesis effort was undertaken, leading to a novel process that combines the mentioned catalytic cascade with proper separation and recycle operations. A techno-economic analysis based on detailed simulation (accounting for experimental reaction conditions and yields) as well as detailed equipment sizing and costing was performed, followed by sensitivity analysis studies to identify the key economic parameters. Furthermore, to assess its economic attractiveness, the process was compared to a benchmark lignocellulosic bio-ethanol production facility. Finally, we considered two different types of biomass. Our studies indicate that the proposed strategy is economically attractive when biomass with high C 6 -sugar content is used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call