Abstract

A novel, sensitive catalytic adsorptive stripping voltammetric procedure which can be used to determine trace amounts of germanium is described. The method is based on the interfacial accumulation of the complex formed by Ge(IV) and the product of the reduction of chloranilic acid on the hanging mercury drop electrode or the renewable silver amalgam film electrode, and its subsequent reduction from the adsorbed state followed by the catalytic action of the V(IV)·HEDTA complex. The presence of V(IV)·HEDTA greatly enhances the adsorptive stripping response of Ge. The reduction of the Ge(IV) in the presence of chloranilic acid and V(IV)·HEDTA was investigated in detail and the effects of pH, electrolyte composition, and instrumental parameters were studied. Under optimal conditions, the catalytic peak current of germanium exhibited good linearity for Ge(IV) concentrations in the range of 0.75–60 nM (for 60 s of accumulation at −0.1 V, r2 = 0.995) and a low limit of detection (LOD = 0.085 nM). The procedure was successfully applied to determine Ge in water samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.