Abstract

The increasing prevalence of patients with aortic stenosis worldwide highlights a clinical need for improved and accurate prediction of clinical outcomes following surgery. We investigated patient demographic and cardiovascular magnetic resonance (CMR) characteristics to formulate a dedicated risk score estimating long-term survival following surgery. We recruited consecutive patients undergoing CMR with gadolinium administration prior to surgical aortic valve replacement from 2003 to 2016 in two UK centres. The outcome was overall mortality. A total of 250 patients were included (68 ± 12 years, male 185 (60%), with pre-operative mean aortic valve area 0.93 ± 0.32cm2, LVEF 62 ± 17%) and followed for 6.0 ± 3.3 years. Sixty-one deaths occurred, with 10-year mortality of 23.6%. Multivariable analysis showed that increasing age (HR 1.04, P = 0.005), use of antiplatelet therapy (HR 0.54, P = 0.027), presence of infarction or midwall late gadolinium enhancement (HR 1.52 and HR 2.14 respectively, combined P = 0.12), higher indexed left ventricular stroke volume (HR 0.98, P = 0.043) and higher left atrial ejection fraction (HR 0.98, P = 0.083) associated with mortality and developed a risk score with good discrimination. This is the first dedicated risk prediction score for patients with aortic stenosis undergoing surgical aortic valve replacement providing an individualised estimate for overall mortality. This model can help clinicians individualising medical and surgical care.Trial Registration ClinicalTrials.gov Identifier: NCT00930735 and ClinicalTrials.gov Identifier: NCT01755936.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.