Abstract

A low-temperature process employing activated carbon-based catalysts and operating downstream of the electrostatic precipitator (ESP) was evaluated jointly by Research Triangle Institute (RTI) and the University of Waterloo (Waterloo). The RTI-Waterloo process was projected to be capable of removing more than 95% SO{sub 2} and 75% NO{sub x }from coal combustion flue gas. In the process, the flue gas leaving the ESP is first cooled to approximately 100{degree}C. The SO{sub 2} is then catalytically oxidized to SO{sub 3} which is removed as medium-strength sulfuric acid in a series of periodically flushed trickle-bed reactors containing an activated carbon-based catalyst. The SO{sub 2}-free gas is then reheated to approximately 150{degree}C and NH{sub 3} is injected into the gas stream. It is then passed over a fixed bed of another activated carbon-based catalyst to reduce the NO{sub x} to N{sub 2} and H{sub 2}O. The clean flue gas is then vented to the stack. The feasibility of the process has been demonstrated in laboratory-scale experiments using simulated flue gas. Catalysts have been identified that gave the required performance for SO{sub 2} and NO{sub x} removal with <25 ppM NH{sub 3} slip. Potential for producing up to 10 N sulfuric acid by periodically flushingmore » the SO{sub 2} removal reactor and further concentration to industrial strength 93.17% sulfuric acid was also demonstrated. Using the results of the experimental work, an engineering evaluation was conducted. Cost for the RTI-Waterloo process was competitive with conventional selective catalytic reduction (SCR) -- flue gas desulfurization (FGD) process and other emerging combined SO{sub 2}/NO{sub x} removal processes.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.