Abstract

Protein glycosylation plays a key role in many biological processes. In this study, a novel carbon material with nanopores was prepared by carbonization of metal-organic framework (MOF) Mil-101(Cr). The parent MOF assembled from metal ions with bridging organic linkers had many fascinating properties, such as ultrahigh surface area, suitable nanopore structure, and especially a large amount of carbon after being calcined. Due to the strong interactions between carbon and glycans as well as the size-exclusion effect of pore against protein, the N-linked glycans from standard glycoprotein or complex human serum proteins could be identified with high efficiency. The simple synthesis method as well as good enrichment efficiency made this novel carbon material a promising tool for glycosylation research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call