Abstract
This paper demonstrates a mathematically correct and computationally powerful method for solving 3D topology optimization problems. This method is based on canonical duality theory (CDT) developed by Gao in nonconvex mechanics and global optimization. It shows that the so-called NP-hard knapsack problem in topology optimization can be solved deterministically in polynomial time via a canonical penalty-duality (CPD) method to obtain precise 0-1 global optimal solution at each volume evolution. The relation between this CPD method and Gao’s pure complementary energy principle is revealed for the first time. A CPD algorithm is proposed for 3-D topology optimization of linear elastic structures. Its novelty is demonstrated by benchmark problems. Results show that without using any artificial technique, the CPD method can provide mechanically sound optimal design, also it is much more powerful than the well-known BESO and SIMP methods. Additionally, computational complexity and conceptual/mathematical mistakes in topology optimization modeling and popular methods are explicitly addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.