Abstract

The refined 1.9-A resolution structure of the periplasmic D-galactose-binding protein (GBP) reveals a calcium ion surrounded by seven ligands, all protein oxygen atoms. A nine-residue loop (amino-acid positions 134-142), which is preceded by a beta-turn and followed by a beta-strand, provides five ligands from every second residue. The last two ligands are supplied by the carboxylate group of Glu 205. The entire GBP Ca2+-binding site adopts a conformation very similar to the site in the 'helix-loop-helix' or 'EF-hand' unit commonly found in intracellular calcium-binding proteins, but without the two helices. Structural analyses have also uncovered the sugar-binding site some 30 A from the calcium and a site for interacting with the membrane-bound trg chemotactic signal transducer approximately 45 A from the calcium. Our results show that a common tight calcium binding site of ancient origin can be tethered to different secondary structures. They also provide the first demonstration of a metal-binding site in a protein which is involved in bacterial active transport and chemotaxis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.