Abstract
Histopathology slides are one of the most applicable resources for pathology studies. As observation of these kinds of slides even by skillful pathologists is a tedious and time-consuming activity, computerizing this procedure aids the experts to have faster analysis with more case studies per day. In this paper, an automatic mitosis detection system (AMDS) for breast cancer histopathological slide images is proposed. In the proposed AMDS, the general phases of an automatic image based analyzer are considered and in each phase, some special innovations are employed. In the pre-processing step to segment the input digital histopathology images more precisely, 2D anisotropic diffusion filters are applied to them. In the training segmentation phase, the histopathological slide images are segmented based on RGB contents of their pixels using maximum likelihood estimation. Then, the mitosis and non-mitosis candidates are processed and hence that their completed local binary patterns are extracted object-wise. For the classification phase, two subsequently non-linear support vector machine classifiers are trained pixel-wise and object-wise, respectively. For the evaluation of the proposed AMDS, some object and region based measures are employed. Having computed the evaluation criteria, our proposed method performs more efficient according to f-measure metric (70.94% for Aperio XT scanner images and 70.11% for Hamamatsu images) than the methods proposed by other participants at Mitos-ICPR2012 contest in breast cancer histopathological images. The experimental results show the higher performance of the proposed AMDS compared with other competitive systems proposed in Mitos-ICPR2012 contest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.