Abstract
Bevel gears are employed in the transmission of motion and torque via non-parallel shafts. When higher strength and lower noise is the objective, spiral bevel gears are used because of their higher tooth contact ratio. Face milling and face hobbing are among the most significant operations for the machining of hypoid and spiral bevel gears due to their high productivity. Although the optimization of these processes is crucial for the production of high-quality gears and the minimization of the total manufacturing cost, there are not many studies reported in this research area, owing to the high complexity of process kinematics. Furthermore, several kinematic variations of the two methods are applied in industry and their results depend highly on the cutting tool geometry. A novel simulation model integrated into a commercial CAD platform has been developed. The model achieves the 3D kinematic simulation of both face milling and face hobbing processes, generating the undeformed solid chip geometry as well as the simulated tooth solid geometry of a spiral bevel gear pinion and a spiral bevel gear wheel as an output. The simulation approach has two main purposes. First, is the optimization of the process through the investigation of the effect of cutting parameters on the quality of the obtained solid tooth flank geometry and second, is the calculation of cutting forces with the use of the obtained solid chip geometries. Aiming towards the validation of the model, the resulted tooth flank geometry is compared with the theoretical tooth exported from a well-established commercial gear calculation and design software and it is verified by means of a novel validation algorithm, also developed as part of this study. This paper focuses on the presentation of the kinematic simulation methodology and the simulation results for the face milling process. An insight into the validation model is provided and validation results are also presented. Finally, a sample investigation of the effect of generating feed rate on the produced gear geometry is conducted with the use of both algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: CIRP Journal of Manufacturing Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.