Abstract

Previous research illustrates that LRU replacement policy is not efficient when applications exhibit a distant re-reference interval. Recently RRIP policy is proposed to improve the performance for such kind of workloads. However, the lack of access recency information in RRIP confuses the replacement policy to make the accurate prediction. To enhance the robustness of RRIP for recency-friendly workloads, we propose an Dynamic Adaptive Insertion and Re-reference Prediction (DAI-RRP) policy which evicts data based on both re-reference prediction value and the access recency information. DAI-RRP makes adaptive adjustment on insertion position and prediction value for different access patterns, which makes the policy robust across different workloads and different phases. Simulation results show that DAI-RRP outperforms LRU and RRIP. For a single-core processor with a 1MB 16-way set last-level cache (LLC), DAI-RRP reduces CPI over LRU and Dynamic RRIP by an average of 8.1% and 2.7% respectively. Evaluations on quad-core CMP with a 4MB shared LLC show that DAI-RRP outperforms LRU and Dynamic RRIP (DRRIP) on the weighted speedup metric by an average of 8.1% and 15.7% respectively. Furthermore, compared to LRU, DAI-RRP consumes the similar hardware for 16-way cache, or even less hardware for high-associativity cache. In summary, the proposed policy is practical and can be easily integrated into existing hardware approximations of LRU.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.