Abstract
Caches ideally should have low miss rates and short access times, and should be power efficient at the same time. Such design goals are often contradictory in practice. Recent findings on efficient attacks based on information leakage in caches have also brought the security issue up front. Design for security introduces even more restrictions and typically leads to significant performance degradation. This paper presents a novel cache architecture that can simultaneously achieve the above goals. Specifically, cache miss rates are reduced with dynamic remapping and longer cache indices, access-time overhead overcome with astute low-level circuit design, and information leakage thwarted by a security-aware cache replacement algorithm together with the performance enhancing mechanisms. We present both theoretical analysis and experimental results, using the SPEC2000 suite to evaluate the cache miss behavior, and CACTI and HSPICE to validate the circuit design. Our results show that the proposed cache architecture has low miss rates comparable to a highly associative cache and short access times and power efficiency close to that of a direct-mapped cache. At the same time it can thwart cache-based software side-channel attacks, providing both legacy and security-enhanced software a much higher degree of security. Additional benefits that the proposed cache architecture can bring, like fault tolerance and hot-spot mitigation, are also discussed briefly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.