Abstract

Single-cell microfluorimetry and electrophysiology techniques were used to identify and characterize a novel Ca(2+) influx pathway in adult rabbit vagal sensory neurons. Acutely dissociated nodose ganglion neurons (NGNs) exhibit robust Ca(2+)-induced Ca(2+) release (CICR) that can be triggered by 10 mM caffeine, the classic agonist of CICR. A caffeine-induced increase in cytosolic-free Ca(2+) concentration ([Ca(2+)](i)) is considered diagnostic evidence of the existence of CICR. However, when CICR was disabled through depletion of intracellular Ca(2+) stores or pharmacological blockade of intracellular Ca(2+) release channels (ryanodine receptors), caffeine still elicited a significant rise in [Ca(2+)](i) in approximately 50% of NGNs. The same response was not elicited by pharmacological agents that elevate cyclic nucleotide concentrations. Moreover, extracellular Ca(2+) was obligatory for such caffeine-induced [Ca(2+)](i) rises in this population of NGNs, suggesting that Ca(2+) influx is responsible for this rise. Simultaneous microfluorimetry with whole cell patch-clamp studies showed that caffeine activates an inward current that temporally parallels the rise in [Ca(2+)](i). The inward current had a reversal potential of +8.1 +/- 6.1 (SE) mV (n = 4), a mean peak amplitude of -126 +/- 24 pA (n = 4) at E(m) = -50 mV, and a slope conductance of 1.43 +/- 0.79 nS (n = 4). Estimated EC(50) values for caffeine-induced CICR and for caffeine-activated current were 1.5 and approximately 0.6 mM, respectively. These results indicate that caffeine-induced rises in [Ca(2+)](i), in the presence of extracellular Ca(2+), can no longer be interpreted as unequivocal diagnostic evidence for CICR in neurons. These results also indicate that sensory neurons possess a novel Ca(2+) influx pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.