Abstract

This paper presents a novel framework for breast cancer detection using mammogram images. The proposed solution aims to output an explainable classification from a mammogram image. The classification approach uses a Case-Based Reasoning system (CBR). CBR accuracy strongly depends on the quality of the extracted features. To achieve relevant classification, we propose a pipeline that includes image enhancement and data augmentation to improve the quality of extracted features and provide a final diagnosis. An efficient segmentation method based on a U-Net architecture is used to extract Regions of interest (RoI) from mammograms. The purpose is to combine deep learning (DL) with CBR to improve classification accuracy. DL provides accurate mammogram segmentation, while CBR gives an explainable and accurate classification. The proposed approach was tested on the CBIS-DDSM dataset and achieved high performance with an accuracy (Acc) of 86.71 % and a recall of 91.34 %, outperforming some well-known machine learning (ML) and DL approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.