Abstract

Simple SummaryT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and still orphan hematologic malignancy. No effective immunotherapeutic strategies are presently available for this poor prognosis disease. We here report the development and the preclinical evaluation of a novel bispecific T-cell engager (BTCE) that simultaneously targets CD1a and CD3ε (CD1a x CD3ε), therefore recruiting T cells against T-ALL cells. We demonstrate that this CD1a x CD3ε BTCE induces activation, proliferation, and cytokine release by T cells in co-cultures with CD1a expressing T-ALL cells, resulting in a concentration-dependent killing of leukemic cells in vitro. Moreover, CD1a x CD3ε BTCE inhibits the in vivo growth of human T-ALL xenografts and improves survival of immunocompromised mice reconstituted with human PBMC from healthy donors. We believe that this BTCE is suitable for clinical development for the treatment of CD1a-expressing T-ALL patients.T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy burdened by poor prognosis. While huge progress of immunotherapy has recently improved the outcome of B-cell malignancies, the lack of tumor-restricted T-cell antigens still hampers its progress in T-ALL. Therefore, innovative immunotherapeutic agents are eagerly awaited. To this end, we generated a novel asymmetric (2 + 1) bispecific T-cell engager (BTCE) targeting CD1a and CD3ε (CD1a x CD3ε) starting from the development of a novel mAb named UMG2. UMG2 mAb reacts against CD1a, a glycoprotein highly expressed by cortical T-ALL cells. Importantly, no UMG2 binding was found on normal T-cells. CD1a x CD3ε induced high T-cell mediated cytotoxicity against CD1a+ T-ALL cells in vitro, as demonstrated by the concentration-dependent increase of T-cell proliferation, degranulation, induction of cell surface activation markers, and secretion of pro-inflammatory cytokines. Most importantly, in a PBMC-reconstituted NGS mouse model bearing human T-ALL, CD1a x CD3ε significantly inhibited the growth of human T-ALL xenografts, translating into a significant survival advantage of treated animals. In conclusion, CD1a x CD3ε is a novel BTCE highly active against CD1a-expressing cortical-derived T-ALL cells suitable for clinical development as an effective therapeutic option for this rare and aggressive disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.