Abstract
The capsule robot (CR) is a promising endoscopic method in gastrointestinal diagnosis because of its low discomfort to users. Most CRs are used to acquire image information only and lack the ability to collect samples. Although some biopsy capsule robots (BCRs) have been developed, it remains challenging to acquire the intestinal tissue while avoiding tearing and adhesion due to the flexibility of colonic tissue. In this study, we develop a BCR with a novel sampling strategy in which soft tissue is scratched with sharp blades rotating at high speed to avoid tissue tearing. In the BCR design, a spiral spring with prestored energy is used to release high energy within a short period of time, which is difficult for a motor or magnet to perform within a small capacity installation space. The energy of the tightened spiral spring is transmitted to drive sharp blades to rotate quickly via a designed gear mechanism. To guarantee reliable sampling, a Bowden cable is used to transmit the user's manipulation to trigger the rotation of the blades, and the triggering force transmitted by the cable can be monitored in real time by a force sensor installed at the manipulating end. A prototype of the proposed BCR is designed and fabricated, and its performance is tested through in vitro experiments. The results show that the proposed BCR is effective and the size of its acquired samples satisfies clinical requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.