Abstract

Ovarian cancer (OC) is the leading cause of gynecological cancer deaths. Extraordinary histologic and genetic heterogeneity presents as great hurdle to OC's diagnosis and treatment. MRPS12 (Mitochondrial Ribosomal Protein S12), encoding a 28S subunit protein, controls the decoding fidelity and susceptibility to aminoglycoside antibiotics. Our study aims to investigate the clinical significance and potential mechanism of MRPS12 in OC.Oncomine, Tumor Immune Estimation Resource database (TIMER), and GEPIA databases were utilized to explore the expression level of MRPS12 in OC and normal tissues. Kaplan–Meier plotter was used to evaluate the influence of MRPS12 expression on OC patients’ survival. The potential biologic function and immune infiltration of MRPS12 in OC were analyzed by GSEA (Gene set enrichment analysis) and TIMER database, respectively.MRPS12 was significantly highly expressed in OC (P < .05) compared with normal ovarian tissues. Its overexpression was also significantly related with poor overall survival in advanced FIGO stage (III+IV) patients, in serous OC and in those patients with TP53 mutation (P < .05). GSEA showed that HALLMARK_G2M_CHECKPOINT, BIOCARTA_CELLCYCLE_PATHWAY, HALLMARK_PI3K_AKT_MTOR_SIGNALING, BIOCARTA_P53_PATHWAY were significantly enriched in high-MRPS12-expression phenotype. MRPS12 expression was positively correlated with the infiltration of macrophages and neutrophils in OC.These results reveal that MRPS12 could function as a potential oncogene and serve as a promising prognostic candidate in OC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call