Abstract

Improving biocompatibility of metallic alloy biomaterials has been of great interest to prevent implant associated-diseases, such as stent thrombosis. Herein a simple and efficient procedure was designed to biofunctionalize a biomaterial surface by isolating a SUS316L stainless steel binding peptide. After three rounds of phage panning procedure, 12 mer peptide (SBP-A; VQHNTKYSVVIR) was identified as SUS316L-binding peptide. The SBP-A peptide formed a stable bond to a SUS316L modified surface and was not toxic to HUVECs. The SBP-A was then used for anti-ICAM antibody modification on SUS316L to construct a vascular endothelial cell-selective surface. The constructed surface dominantly immobilized vascular endothelial cells to smooth muscle cells, demonstrating that the SBP-A enabled simple immobilization of biomolecules without disturbing their active biological function. The SUS316L surface was successfully biofunctionalized using the novel isolated peptide SBP-A, showing its potential as an ideal interface molecule for stent modification. This is the first report of material binding peptide-based optimal surface functionalization to promote endothelialisation. This simple and efficient biofunctionalization procedure is expected to contribute to the development of biocompatible materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call