Abstract
Thermosensitive hydrogels are attractive alternative scaffolding materials for minimally invasive surgery through a simple injection and in situ gelling. In this study, a novel poly(ester-amide) polymer, methoxy poly(ethylene glycol)-poly(pyrrolidone-co-lactide) (mPDLA, P3L7) diblock copolymer, was synthesized and characterized for cartilage tissue engineering. A series of amphiphilic diblock copolymers was synthesized by ring-opening polymerization of mPEG 550, D,L-lactide, and 2-pyrrolidone. By dynamic light scattering analysis and tube-flipped-upside-down method, viscoelastic properties of the mPDLA diblock copolymer solution exhibited sol-gel transition behavior as a function of temperature. An in vitro degradation assay showed that degradation acidity was effectively reduced by introducing the 2-pyrrolidone monomer into the polyester hydrogel. Besides, mPDLA exhibited great biocompatibility in vitro for cell encapsulation due to a high swelling ratio. Moreover, cell viability and biochemical analysis proved that the mPDLA hydrogel presented a great chondrogenic response. Taken together, these results demonstrate that mPDLA hydrogels are promising injectable scaffolds potentially applicable to cartilage tissue engineering.
Highlights
Osteoarthritis (OA) is statistically the most common degenerative joint disease in elderly people [1]
Synthesis and Characterization of mPDLA Copolymers. mPEG-poly(ester-amide) copolymers with great injectable and thermosensitive characteristics were synthesized by ringopening polymerization with the terminal alcohol of mPEG as the initiator
P3L7-1705 a Determined by 1H-NMR. b Determined by gel permeation chromatography (GPC)
Summary
Osteoarthritis (OA) is statistically the most common degenerative joint disease in elderly people [1]. To diagnose and treat OA is a critical issue, as three quarters of elderly people are suffering from various degrees of OA [2]. To repair defects in the articular cartilage is difficult because of their avascular nature, easy formation of fibrocartilage, and limited number of chondrocytes to facilitate the recovery [3]. Autologous chondrocyte implantation represents one of the first tissue engineering applications for the regeneration of articular cartilage surface [4]. Tissue engineering approach using appropriate scaffolds might be able to induce a correct type of cartilage from different cell sources such as bone marrow-derived stem cells [5]. Three dimensional scaffolds can be used to expand the number of chondrocytes without dedifferentiation. An ideal scaffold for cartilage tissue engineering should be biocompatible and biodegradable and should have adequate degradation and adsorption rates for tissue replacement [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.