Abstract

In the efforts to develop a biocompatible transition metal complex as a drug alike for some of the prevailing non-communicable diseases (NCDs) and communicable diseases (CDs), a novel binuclear NiII compound [{NiII(hpdbal-sbdt)}2] (2) has been synthesized by the reaction of Ni(OAc)2.4H2O and H2hpdbal-sbdt (1) [1 is a dibasic tridentate ONS2− donor Schiff base ligand obtained by the condensation of 2-hydroxy-5-(phenyldiazenyl)benzaldehyde (Hhpdbal) and S-benzyldithiocarbazate (Hsbdt)]. Both ligand 1 and compound 2 were structurally characterized in the solid and solution state using various spectroscopic techniques like ATIR, 1H NMR, 13C NMR, TGA, FESEM, EDS and CHNS analysis. The antidiabetic activity of H2hpdbal-sbdt (1) and [{NiII(hpdbal-sbdt)}2] (2) were assessed using 2-NBDG uptake assay. The assay results showed 85% and 95% of fluorescent glucose uptake by insulin resistant HePG2 cells treated with compounds 1 and 2 respectively. The 2-NBDG uptake by the cells treated with the compound 2 was observed to be comparable to the standard antidiabetic drug metformin. Compounds 1 and 2 were also tested against five bacterial and two fungi strains in order to evaluate pathogen killing activity. Compound 2 showed significant inhibitory action towards the methicillin-resistant Staphylococcus aureus (MRSA) strain with an MIC value of 2 μg/mL whereas the ligand 1 was found to be inactive. Furthermore, the interactive nature of compound 2 with a model serum carrier protein bovine serum albumin (BSA) was studied using a multi-spectroscopic approach which provided an insight into the nature and extent of binding, conformational changes and the quenching of amino acid residues of the protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.