Abstract
A bio-based bisphenol compound (DFA) was prepared using bisphenolic acid and furfurylamine in biomass as raw materials. Then, a bio-based amide phthalonitrile monomer (DFAP) was obtained in an environmentally friendly solvent. Nuclear magnetic resonance and Fourier transform infrared spectroscopy (FT-IR) proved the successful synthesis of DFA and DFAP. The curing behavior and curing kinetics of the polymer were studied using FT-IR and differential scanning calorimetry. Calculate the activation energy using the isoconversion method. The SB(m, n) autocatalytic reaction model describing the curing process of poly(DFAP) was modified and fitted by introducing the variable activation energy model. The thermal stability, thermomechanical properties and processing properties of the resin were studied using technologies such as thermogravimetric analyzer, dynamic mechanical analyzer and rheometer. The results show that the prepolymer has a wide processing window and a low melt viscosity. Poly (DFAP) has a high glass transition temperature and excellent thermal stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.