Abstract

Previously identified high affinity integrin-binding motifs in collagens, GFOGER and GLOGER, are not present in type III collagen. Here, we first characterized the binding of recombinant I domains from integrins alpha(1) and alpha(2) (alpha(1)I and alpha(2)I) to fibrillar collagen types I-III and showed that each I domain bound to the three types of collagens with similar affinities. Using rotary shadowing followed by electron microscopy, we identified a high affinity binding region in human type III collagen recognized by alpha(1)I and alpha(2)I. Examination of the region revealed the presence of two sequences that contain the critical GER motif, GROGER and GAOGER. Collagen-like peptides containing these two motifs were synthesized, and their triple helical nature was confirmed by circular dichroism spectroscopy. Experiments show that the GROGER-containing peptide was able to bind both alpha(1)I and alpha(2)I with high affinity and effectively inhibit the binding of alpha(1)I and alpha(2)I to type III and I collagens, whereas the GAOGER-containing peptide was considerably less effective. Furthermore, the GROGER-containing peptide supported adhesion of human lung fibroblast cells when coated on a culture dish. Thus, we have identified a novel high affinity binding sequence for the collagen-binding integrin I domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.