Abstract

Given a connected undirected graph G whose edges are labeled, the minimum labeling spanning tree (MLST) problem is to find a spanning tree of G with the smallest number of different labels. The MLST is an NP-hard combinatorial optimization problem, which is widely applied in communication networks, multimodal transportation networks, and data compression. Some approximation algorithms and heuristics algorithms have been proposed for the problem. Firey algorithm is a new meta-heuristic algorithm. Because of its simplicity and easy implementation, it has been successfully applied in various fields. However, the basic firefly algorithm for the MLST problem is proposed in this paper. A binary operation method to update firefly positions and a local feasible handling method are introduced, which correct unfeasible solutions, eliminate redundant labels, and make the algorithm more suitable for discrete problems. Computational results show that the algorithm has good performance. The algorithm can be extended to solve other discrete optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.