Abstract

Flexible supercapacitors with high power density and long cyclic stability represent a promising candidate to be used as power supplies for portable electronics, but often suffer from the disadvantages of a limited working voltage and rapid self-discharge (spontaneous drop of open-circuit voltage). Here, we design a bilayer heterogeneous poly(ionic liquid) electrolyte (BHPE) consisting of a polycation complex and a polyanion complex with different zeta potentials to suppress the self-discharge of flexible symmetric supercapacitors. The resultant BHPE-based supercapacitors using active carbon/carbon nanotube composite electrodes exhibit a high working potential of 3.0 V and an energy density of 33 W h kg-1, which are comparable with those of devices obtained by using a homogeneous poly(ionic liquid) electrolyte (HPE). More significantly, the developed BHPE-based supercapacitor charged under forward bias exhibits a self-discharge time of 23.2 h, which is at least twice that of the device charged under reverse bias and is also much superior to those of HPE-based supercapacitors. The BHPE-based supercapacitors also possess excellent mechanical flexibility and stability, due to the stabilized interface contact between two layers of poly(ionic liquid)s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.