Abstract

BackgroundImproving the hydrolytic performance of xylanolytic enzymes on arabinoxylan is of importance in the ethanol fermentation industry. Supplementation of debranching (arabinofuranosidase) and depolymerizing (xylanase) enzymes is a way to address the problem. In the present study, we identified a bifunctional α-l-arabinofuranosidase/endo-xylanase (Ac-Abf51A) of glycoside hydrolase family 51 in Alicyclobacillus sp. strain A4. Its biochemical stability and great hydrolysis efficiency against complex biomass make it a potential candidate for the production of biofuels.ResultsThe gene encoding Ac-Abf51A was cloned. The comparison of its sequence with reference proteins having resolved 3D-structures revealed nine key residues involved in catalysis and substrate-binding interaction. Recombinant Ac-Abf51A produced in Escherichia coli showed optimal activity at pH 6.0 and 60 °C with 4-nitrophenyl-α-l-arabinofuranoside as the substrate. The enzyme exhibited an exo-type mode of action on polyarabinosides by catalyzing the cleavage of α-1,2- and α-1,3-linked arabinofuranose side chains in sugar beet arabinan and water-soluble wheat arabinoxylan and α-1,5-linked arabinofuranosidic bonds in debranched sugar beet arabinan. Surprisingly, it had capacity to release xylobiose and xylotriose from wheat arabinoxylan and was active on xylooligosaccharides (xylohexaose 1.2/mM/min, xylopentaose 6.9/mM/min, and xylotetraose 19.7/mM/min), however a lower level of activity. Moreover, Ac-Abf51A showed greater synergistic effect in combination with xylanase (2.92-fold) on wheat arabinoxylan degradation than other reported enzymes, for the amounts of arabinose, xylose, and xylobiose were all increased in comparison to that by the enzymes acting individually.ConclusionsThis study for the first time reports a GH51 enzyme with both exo-α-l-arabinofuranosidase and endo-xylanase activities. It was stable over a broad pH range and at high temperature, and showed greater synergistic effect with xylanase on the degradation of wheat arabinoxylan than other counterparts. The distinguished synergy might be ascribed to its bifunctional α-l-arabinofuranosidase/xylanase activity, which may represent a possible way to degrade biomass at lower enzyme loadings.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0366-0) contains supplementary material, which is available to authorized users.

Highlights

  • Improving the hydrolytic performance of xylanolytic enzymes on arabinoxylan is of importance in the ethanol fermentation industry

  • The catalytic glutamate residues are indicated by asterisk, and the conserved residues are indicated by hash

  • The results suggest that efficient degradation of wheat arabinoxylan is achieved by the first cleavage of the main chains with XynBE18 followed by branch removal with Ac-Abf51A

Read more

Summary

Introduction

Improving the hydrolytic performance of xylanolytic enzymes on arabinoxylan is of importance in the ethanol fermentation industry. Hemicellulose, the second most abundant polysaccharide in plants, combines with cellulose and lignin to compose lignocellulose of plant cell walls, and accounts for about 20–35 % of lignocellulosic biomass [1, 2] It mainly consists of xylan, glucuronoxylan, arabinoxylan, glucomannan, and xyloglucan, and has attracted much attention for their industrial importance in bioconversion of plant biomass to biofuel, improvement of animal feedstock digestibility, and organic synthesis [3, 4]. Heterogeneous xylans are the major constituents of hemicellulose Among them, arabinoxylans such as those found in wheat straw [5] consist of a backbone of β-1,4-linked d-xylopyranose residues that are extensively decorated at C-2 and/or C-3 positions with arabinofuranose side chains [6, 7]. Due to the structural complexity of xylans, efficient hydrolysis of wheat arabinoxylan to achieve high xylose yields by complete xylan monomerization requires supplementing xylanases with α-l-arabinofuranosidases and other accessory enzymes [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call