Abstract

In this work, a novel bi-material missing rib-type tetra-chiral tubular metamaterial (BMTTM) is designed by utilizing the base materials with different coefficients of thermal expansion (CTEs), and considering various material combinations. Counterintuitively, twist effect can be observed with temperature variation or uniaxial load for the BMTTM. The theoretical formations of the twist angle, Poisson's ratio (PR) and CTE are established and verified subsequently by numerical simulations. Theoretical and numerical results indicate that tailoring twist angle of the BMTTM can be achieved by manipulating the base material combination and the microstructural geometry. The BMTTM proffers a novel avenue to design temperature sensors, actuators, and satellite support tubes, serving in fluctuating temperature environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.